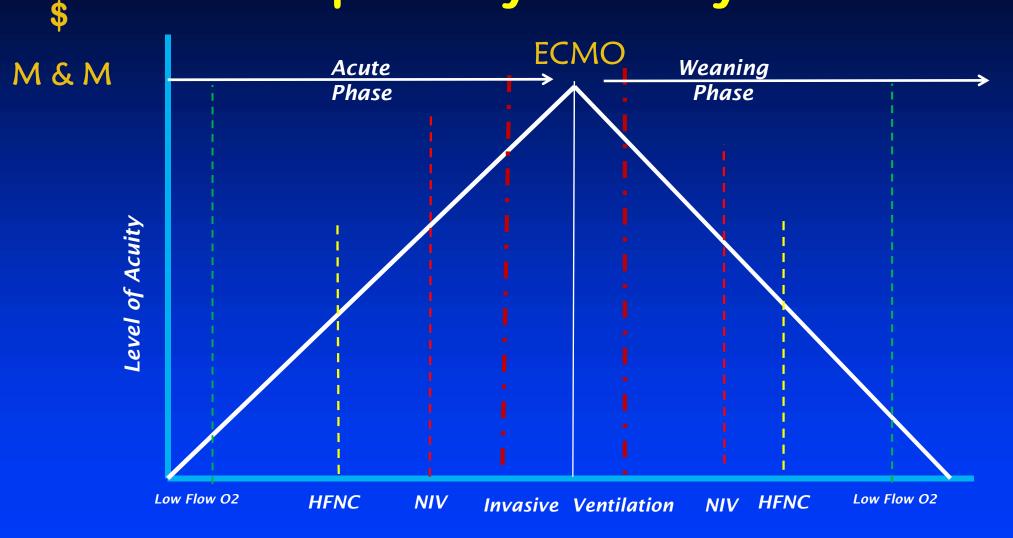
Noninvasive Monitoring of Gas Exchange: Questions Answered

Michael Gentile MBA RRT FAARC FCCM Duke University Medical Center michael.gentile@duke.edu

Conflict of Interest

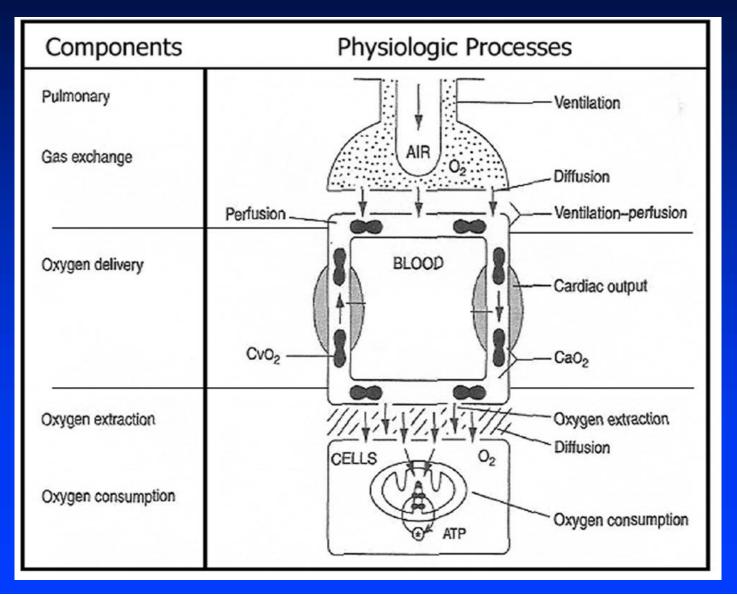
I have no real or perceived conflict of interest that relates to this presentation.

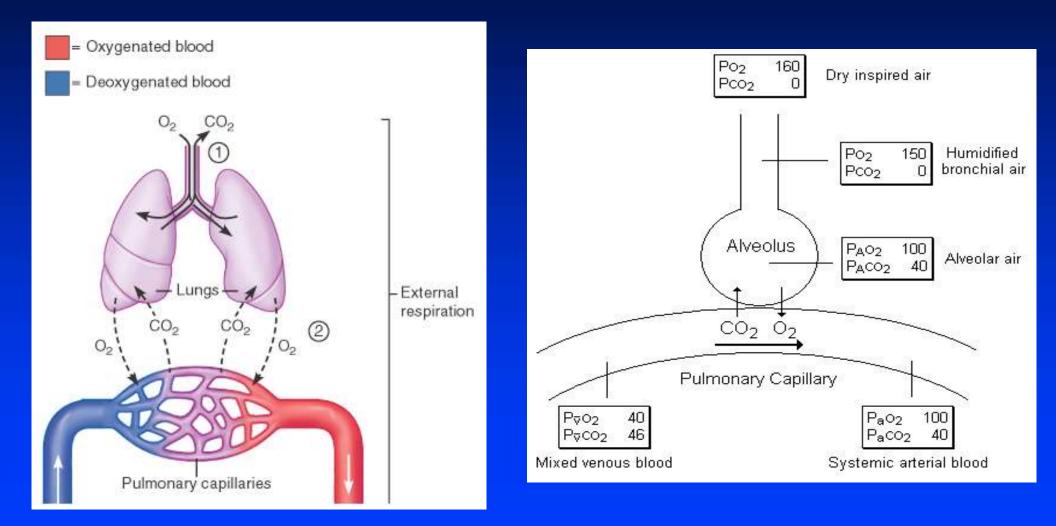

Any use of brand names is not in any way meant to be an endorsement of a specific product, but to merely illustrate a point of emphasis.

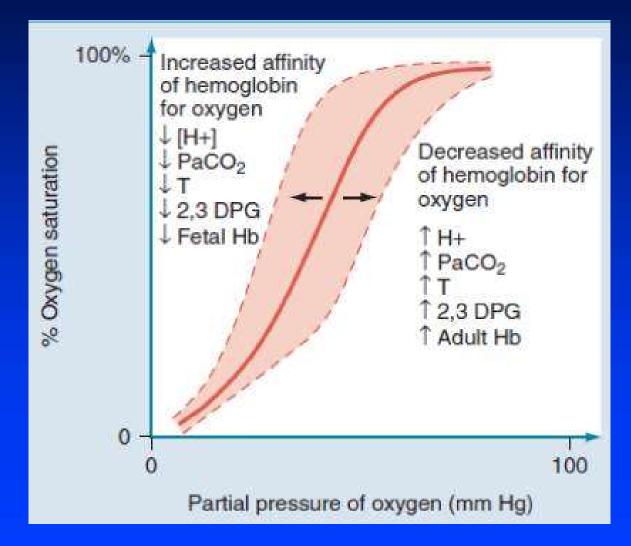
Objectives

- Describe the correlation of noninvasive monitoring and other physiologic measurements.
- Identify the technology available for noninvasive monitoring of gas exchange.
- Identify clinical areas in which noninvasive monitoring may help to improve patient assessment and treatment.

Respiratory Care Pyramid





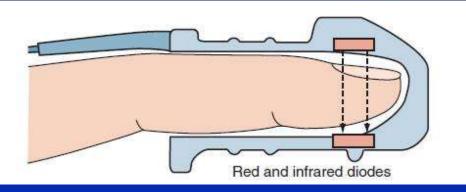

Rationale

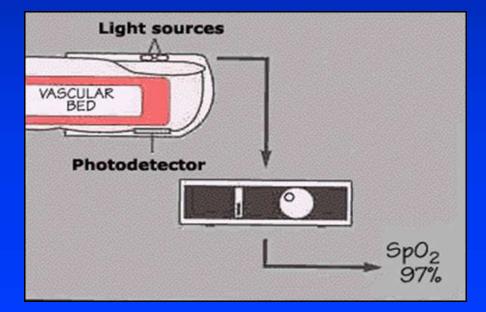
Blood and Air

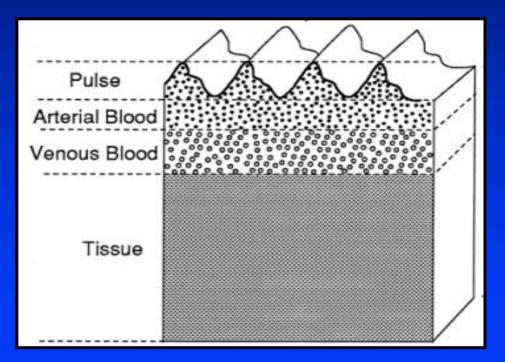
Linking Oxygenation & Ventilation

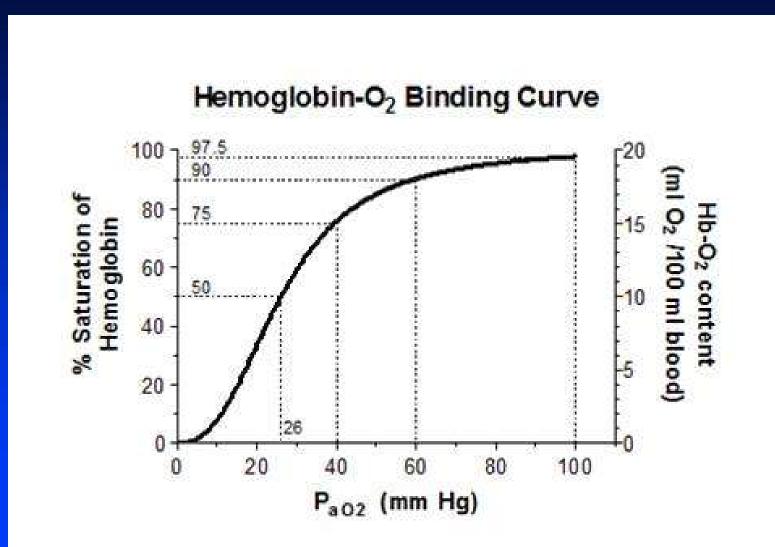
Vital Signs

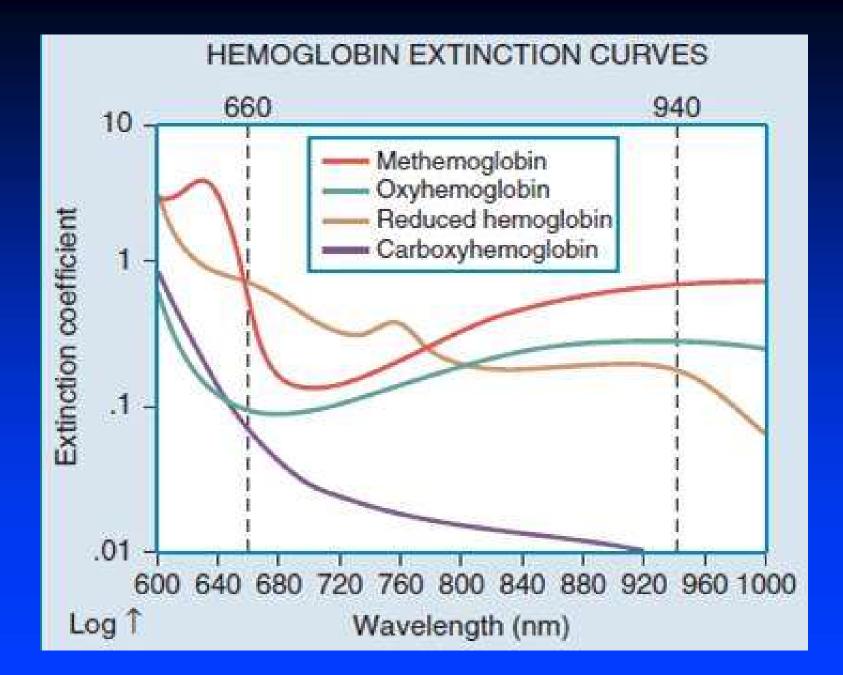
Heart Rate
Blood Pressure
Temperature
Respiratory Rate






ABG vs. **Continuous Monitoring** • Arterial Blood Gases • Pulse Oximetry (SpO₂) • Capnography (ETCO₂) • Transcutaneous (SpO₂/CO₂)


Pulse Oximetry



Equipment

a Amazon.com: pulse oxim ×			B				Mike —	
← → C ☆ 🏻 https://www.amazon.com/s/ref=sr_st_re	levanceblender?keywords=pulse+o	ximeter&rh=i%3Aaps%	52Ck%3Apulse+oxin	neter&qid=1481	162208&sort=rel	evanceblender		多
👯 Apps 🔞 The University of Mo 🛛 🔳 Duke University Hosp 🔛	inbox (33) - mag4325 🛛 🕒 Purdue OWL:	APA For The Hillsbo	ough Han 🛭 🌀 Google	e 🗋 Early ICU Ve	entilators 🍿 Quick	and Easy Pizza		»
NEW & INTERESTING FINDS O	N AMAZON EXPLORE				h		N.	Â.
		🚍 Gift Cards 🔻	📅 Registry & Lists 🔻	* Weekly Ads	• Store Finder •	Track Orders	Credit Card	? Help
	e oximeter				\square	my account sign in	t∼ 0 ite	ms 📜
	"pu	Ise oxime	ter"					
filter results related searcher sort by relevance ✓		finger pulse oximeter	1	pi	ulse oximeter bab	<u>by</u>		
A category health (11)						SMIRTHE	1.0	
∧ type	£ 97§		S.	and a		Pulse Oximeter Portable Spot-Check Monitoring	RT'AL	
Pulse Oximeter (11)	cemmed 72 m			1		4µ02: Blood Okygen		
∧ age	ā 72 ·			1/0/		anst. Heart Role	Tariut:	
Adult (18 years and up) (9)							tillet.	
Child (3-9 years) (1)						ine and briddenin	and	
Senior (65 years and								

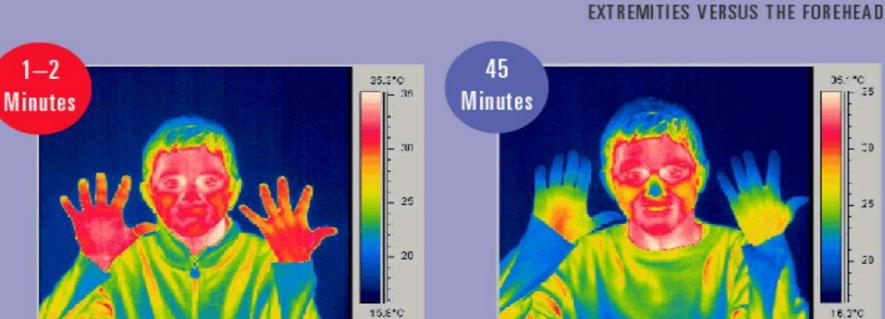
Equipment

Breakthrough Measurements. Radical Monitor.

Radical-7°

To learn more, click here >>

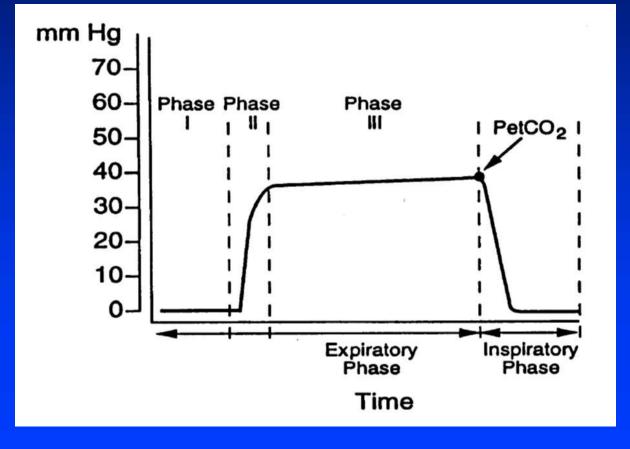
Probe Selection and Placement

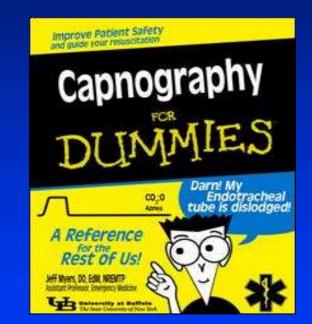


Issues with Pulse Oximetry

Normal Signal Low Perfusion Noise Artifact my MA Motion Artifact

Factor	Effect	
Carboxyhemoglobin (COHb)	Slight reduction of the assessment of oxygen saturation (Sao ₂) by pulse oximetry (Spo ₂) (i.e., overestimates the fraction of hemoglobin available for O ₂ transport)	
Methemoglobin (MetHb)	At high levels of MetHb, Spo ₂ approaches 85%, independent of actual Sao ₂	
Methylene blue	Transient, marked decrease in Spo ₂ lasting up to several minutes; possible secondary effects as a result of effects on hemodynamics	
Anemia	If Sao ₂ is normal, no effect; during hypoxemia with Hb values less than 14.5 g/dL, progressive underestimation of actual Sao ₂	
Ambient light interference	Bright light, particularly if flicker frequency is close to a harmonic of the light-emitting diode switching frequency, can falsely elevate the Spo ₂ reading	
Blood flow	Reduced amplitude of pulsations can hinder obtaining a reading or cause a falsely low reading.	
Motion	Movement, especially shivering, may depress the Spo ₂ reading.	
Nail polish	Slight decrease in Spo ₂ reading, with greatest effect using blue nail polish, or no change	
Sensor contact	"Optical shunting" of light from source to detector directly or by reflection from skin results in falsely low Spo ₂ reading.	
Skin pigmentation	Small errors or no significant effect reported; deep pigmentation can result in reduced signal.	
Таре	Transparent tape between sensor and skin has little effect; falsely low Spo ₂ has been reported when smeared adhesive is in the optical path.	
Vasodilatation	Slight decrease	
Venous pulsation	Artifactual decrease in Spo ₂	


THERMAL IMAGE OF A HEALTHY ADULT IN A COLD ROOM



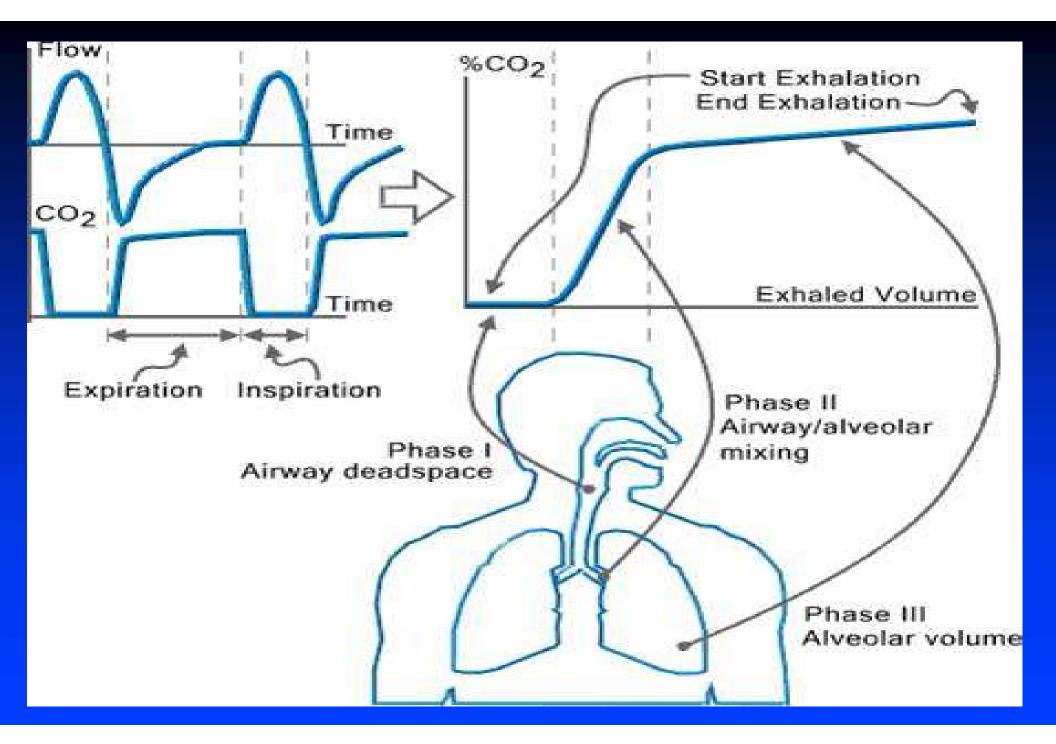
Practice Pearls

- When in doubt, feel for a pulse (signal strength matters)
- Consider SpO₂ a diagnostic tool
- Know the limitations of the technology
- Correlate patient condition with SpO₂ reading
- Use the right probe for the situation
- Know the technology (you are the expert)

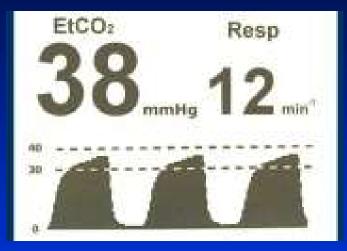
Capnography: End Tidal CO₂

Capnography Clinical Applications

- -Verification of ETT Placement
- -CPR
- Trend ETCO₂
- Brain death study
- Conscious sedation
- Patient transport
- Deadspace measurement


SpO₂ versus ETCO₂

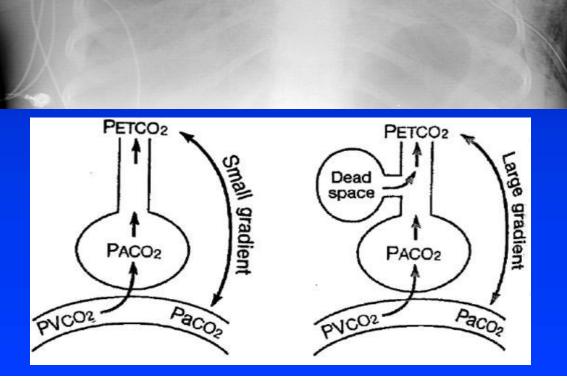
Pulse Oximetry

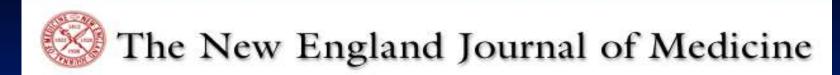

- > Oxygen saturation
- Reflects oxygenation
- SpO₂ changes lag
 when patient is
 hypoventilating or
 apneic
- Should be used with capnography

Capnography

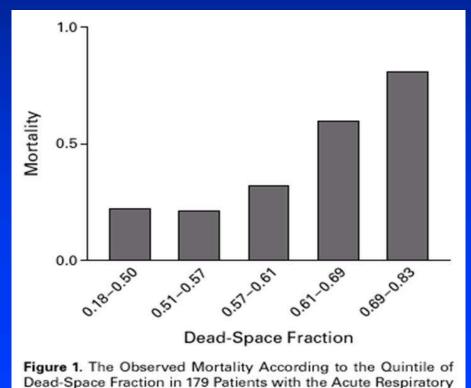
- Carbon dioxide
- Reflects ventilation
- Hypoventilation of apnea detected immediately
- Should be used with pulse
 oximetry

Equipment





Deadspace



5

PULMONARY DEAD-SPACE FRACTION AS A RISK FACTOR FOR DEATH IN THE ACUTE RESPIRATORY DISTRESS SYNDROME

THOMAS J. NUCKTON, M.D., JAMES A. ALONSO, R.R.T., RICHARD H. KALLET, R.R.T., M.S., BRIAN M. DANIEL, R.R.T., JEAN-FRANÇOIS PITTET, M.D., MARK D. EISNER, M.D., M.P.H., AND MICHAEL A. MATTHAY, M.D.

Distress Syndrome.

AARC Clinical Practice Guideline

Capnography/Capnometry During Mechanical Ventilation: 2011

Brian K Walsh RRT-NPS FAARC, David N Crotwell RRT-NPS, and Ruben D Restrepo MD RRT FAARC

RESPIRATORY CARE • APRIL 2011 VOL 56 NO 4

- Waveform / colorimetric device for ETT placement verification.
- Use as a guide for mechanical ventilator management.
- Use during transport of intubated patient.
- Identification of exhalation abnormalities.
- Measure and manage Vd/Vt
- Use during CPR

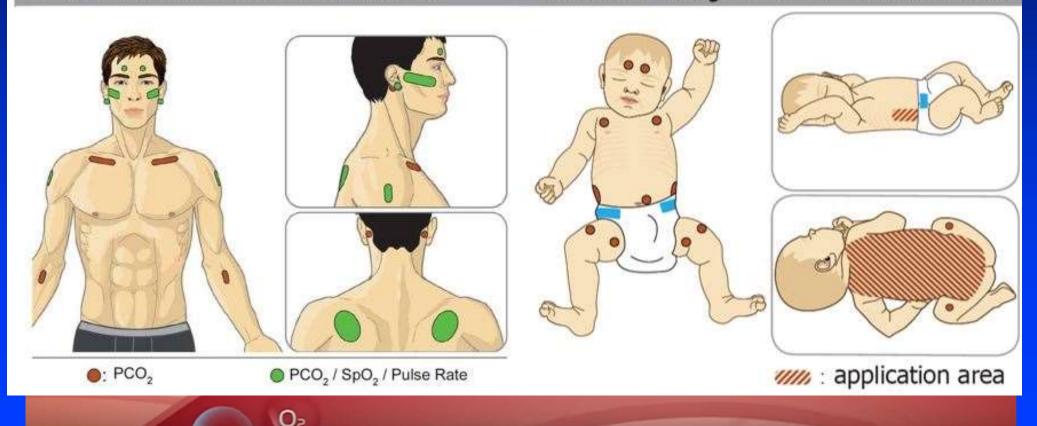
Capnography Practice Pearls

- ETCO₂ PaCO₂ gradient reflects degree of deadspace and lung impairment.
- Sections and fluid interfere with signal.
- Minimize patient/ventilator disconnections.
- ♦ Low ETCO₂ values indicate trouble.
- Changes over time as patient changes.
- Issues are usually the patient, not the monitor.
- Chasing normal values may not be possible

TC Monitoring of Gas Exchange

- Transcutaneous monitoring measures skinsurface PO₂ and PCO₂.
- Induces hyperperfusion by local warming of the skin.
- Measures partial pressure of oxygen and carbon dioxide electrochemically.
- Need to monitor the adequacy of oxygenation & ventilation in all patient populations.
- Need to measure the response to diagnostic & therapeutic interventions.

Transcutaneous Monitoring



Transcutaneous Sensor

Selection of Patient Type, Measurement Site and Sensor Attachment Accessory

'Adult' if Older than Term Birth + 1 Month

'Neonatal' if Younger than Term Birth + 1 Month

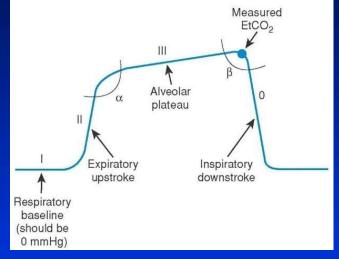
Conscious Sedation

Dermatology Radiation Oncology Bronch Suite General surgery Interventional radiology Interventional cardiology ENT ED GI Urology Dentistry ???

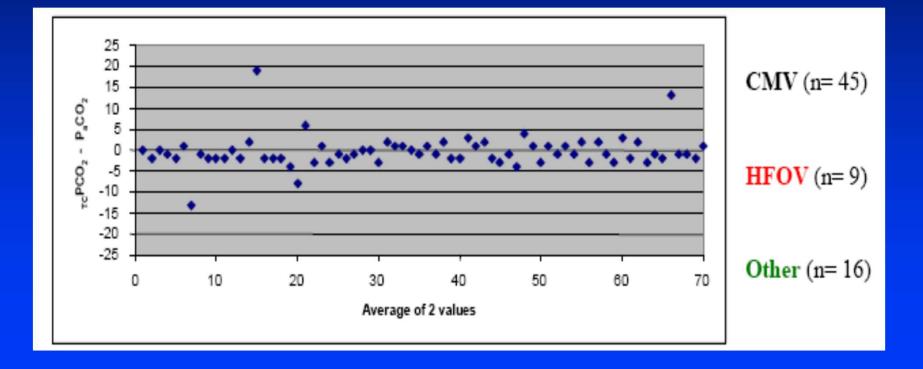
Conscious Sedation

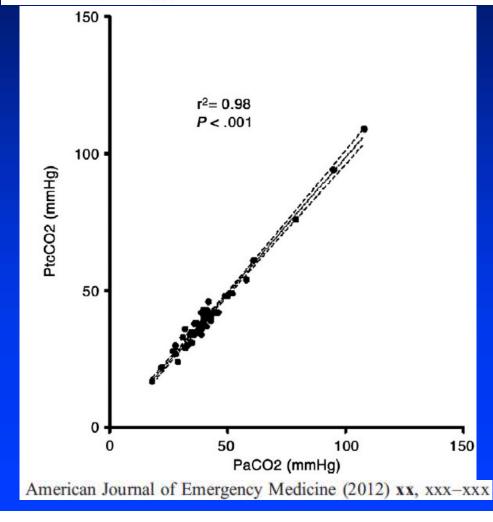
- Planning the Administration of Moderate or Deep Sedation or Anesthesia
- "Depth & Adequacy of Respiration"
- Usually done with 3 lead ECG & SpO₂
- May trigger Rapid Response Team activity

NPPV and HFNC



Transcutaneous vs Capnography




EVALUATION OF A NEW DIGITAL TRANSCUTANEOUS TCPCO2 & SPO2 COMBINATION SENSOR AND ITS CORRELATION TO ABG PaCO2 MEASUREMENTS

Daniel D. Rowley, BS, RRT-NPS, RPFT, Brian K. Walsh, BS, RRT-NPS, RPFT, Barry Young, BS, RRT, Frank J. Caruso, BS, RRT

Pulmonary Diagnostics and Respiratory Therapy Services University of Virginia Health System, Charlottesville, Virginia

Concordance between transcutaneous and arterial measurements of carbon dioxide in an ED Accuracy of transcutaneous CO₂

Range 17-109 mm Hg Heart failure, pneumonia, asthma, COPD

Techniques for the Measurement and Monitoring of Carbon Dioxide in the Blood

Criterion	ABG	CBG	VBG	Capnography/ Capnometry	Ptc _{co₂}
"Gold standard"	+	-	-	-	
Accurate	+	+		-	
Continuous		19 <u>1</u>		+	+
Noninvasive	-	-	-	+	+
Painless	-		1.55	+	+
Without puncture damage	3. 55		. 	+	+
Without blood loss	-		-	+	+
Rapid results/no delay	+	-	+	+	
Additional parameters*	+	+	+	_	
Nonskilled staff	-	+	+	+	+
Standard venous blood sample	-	-	+		_
No technical drift	+	+	+	+	-
Valid with perfusion- ventilation mismatch	+	+	+	-	+
Independent from leakage	+	+	+	-	+
No sleep disturbance	<u> </u>		-	+	+
Independent from dermal perfusion	+	-	+	+	_
No artificial airway necessary	+	+	+	1.000 A	+

Ann Am Thorac Soc Vol 11, No 4, pp 645-652, May 2014

AARC Clinical Practice Guideline: Transcutaneous Monitoring of Carbon Dioxide and Oxygen: 2012

Ruben D Restrepo MD RRT FAARC, Keith R Hirst MSc RRT-NPS. Leonard Wittnebel MSIS RRT, and Richard Wettstein MMEd RRT

Respiratory Care • November 2012 Vol 57 No 11

Correlate with ABG
 Use to asses adequacy of ventilation
 Use to asses tissue perfusion
 Avoid thick skin/edema
 Rotate sensor sights
 Follow manufacturer recommendations

Transcutaneous Monitoring

- Neonatal to Adult population
- Sensor sites are plentiful
- Monitoring TcPCO₂ has appeal
- > Technology has arrived
- Correlation studies have been DONE!!!!
- Help decide ABG sampling timing
- Reduce ABG samples
- > Accurate data leads to clinical decisions

Summary

- Monitoring ensures rapid detection of changes in the clinical status.
- Allows for accurate assessment of progress and response interventions.
- Use non-invasive techniques when possible.
- Monitoring is crucial for patient safety

Thanks for your attention!

