LuMon[™] OEM System – Adults / Children configuration (LMOS-A)

SenTec EIT technology Compact & Lightweight Regional lung function monitoring at the bedside

Noninvasive & Radiation Free

Skin friendly & Easy to Use

SenTec's LuMon[™] OEM System (LMOS) is a compact and lightweight Electrical Impedance Tomogaphy (EIT)

system providing noninvasive monitoring of patient respiration as well as of variations of regional air content within a cross-section of the patient's lungs. The Adults / Children configuration of the LuMon™ OEM System (LMOS-A) is intended for patients, whose underbust girth is within approximately 76 to 128 cm. The LMOS-A comprises SenTec's integration-ready OEM EIT Modules, external LuMon™ Modules, SensorBeltConnectors to link SenTec's patented, textile SensorBelts being available in four sizes to either OEM customer products integrating OEM EIT Modules or external LuMon[™] Modules being interfaced with an OEM customer product, as well as SenTec's ContactAgent serving as a medium for impedance coupling between a SensorBelt and the patient's skin. SenTec EIT solutions offer flexibility in all clinical environments.

SenTec's EIT platform is the world's only EIT system selecting the thorax and lung contours being best adapted to the individual patient from a set of predefined, CT-derived thorax and lung contours. It continuously evaluates the skin-contact quality of all 32 electrodes and its advanced, unique image reconstruction algorithms are able to compensate up to 6 electrodes having bad or no impedance coupling to the skin. The LuMon[™] OEM System also features a patented position sensor continously evaluating the patient's position and permitting the clinician to unambiguously assess the influence of the patient's position on the ventilation distribution in the patient's lungs.

EIT-based, regional lung function monitoring has the potential to optimize mechanical ventilation, to reduce ventilator-induced lung injuries, and to shorten the duration of mechanical ventilation. For example, it has been proven useful in optimizing ventilator settings in critically ill patients suffering from ARDS [1]. It has also been shown helpful in assessing lung collapse and lung over-distention [2, 3] and therefore can play an important role in the individualization of patients' PEEP settings [4, 5]. Furthermore, EIT can also help to reduce postoperative atelectasis or to guide protective ventilation strategies [6].

System performance

Respiratory Rate (RRi)			
Measurement Principle	Impedance based		
Units	Breaths per minute (bpm)		
Range	4 – 66 bpm		
Resolution	1 bpm		
Accuracy (Arms)	± 2 bpm over 5 – 60 bpm		
End-expiratory lung impeda	ance (EELI) / End-inspiratory lung impedance (EILI)		
EELI- and EILI-values are	the sum of the impedance values of all lung-pixels		
measured at the end of ex	piration (start of inspiration) and end of inspiration,		
reflect the lung impedance	at corresponding points in time and, consequently,		
are related to end-expirato	ry and end-inspiratory lung volume, respectively.		
Units	Arbitrary Units (AU)		
Measurement Range	Not applicable		
Aeration			
Aeration-values are the 15	-seconds mean of the impedance values of all lung-		
pixels, correspond to mear	n lung impedance and, consequently, are related to		
mean lung volume.			
Units	Arbitrary Units (AU)		
Measurement Range	Not applicable		
Relative Tidal Stretch (RTS)		
Relative Tidal Stretch (RTS) is defined as a lung-pixel's impedance change			
during a breath with respect to the maximum pixel impedance change.			
Units	%		
Measurement Range	0 - 100%		
Center of Ventilation (CoV)			

CoV-values are defined as the weighted geometrical center of ventilation distribution within the lung contours. CoV(v) and CoV(h) characterize the ventilation distribution in vertical and horizontal directions, whereas CoV(rl) and CoV(vd) characterize the ventilation distribution in right-to-left and ventrodorsal directions, respectively. CoV(v) defines the position of the Horizon of Ventilation (HoV).

Units	%				
Measurement Range	0 – 100% for CoV(v), CoV(h), CoV(vd), CoV(rl)				
Functional Lung Spaces / Silent Spaces					
Functional Lung Spaces (I greater than 10% during defined as Silent Spaces. lung-areas that are well v represent lung-areas receiv- being localized above or be Spaces (NSS) and Depende Silent Spaces may be helpfi endotracheal tube, pneur conditions influenced by gre areas, with DSS reflecting th	FLS) are defined as lung-pixels with RTS-values a breath, whereas the remaining lung-pixels are Functional Lung Spaces, consequently, represent entilated during a breath, whereas Silent Spaces ing little or no ventilation. Further, Silent Spaces show the HoV are defined as Non-Dependent Silent nt Silent Spaces (DSS), respectively. Il to identify conditions such as displacement of the mothoraxes, and pleural effusions as well as wity such as collapsed, fluid filled or distended lung ne first two conditions and NSS the latter.				
Units	%				
Measurement Range	0 - 100%				
	whereby NSS + DSS + FLS = 100%				
	Units Measurement Range Functional Lung Spaces/Sil Functional Lung Spaces (I greater than 10% during defined as Silent Spaces. lung-areas that are well v represent lung-areas receiv being localized above or be Spaces (NSS) and Depende Silent Spaces may be helpfu endotracheal tube, pneur conditions influenced by gra areas, with DSS reflecting th Units Measurement Range				

- Bachmann et al.: Electrical impedance tomography in acute respiratory distress syndrome. Critical Care 2018: 22-263. Gómez-Laberge et al.: A unified approach for EIT imaging of r egional overdistension and atelectasis in acute lung injury. IE EE Trans Med Imaging. 2012 Mar; 31(3):834-42. [2]
- [3] [4] Spadaro et al.: Variation of poorly ventilated lung units (silent spaces) measured by electrical impedance tomography to dynamically assess recruitment. Critical Care 2018: 22-26. Zhao et al.: Positive end-expiratory pressure titration with electrical impedance tomography and pressure–volume curve in severe acute respiratory distress syndrome. Ann. Intensive Care 2019: 9-7.
- [5] Ukere et al.: Perioperative a nent of regional ventilation during changing body positions and ventilation conditions by electrical impedance tomography. British Journal of Anaesthesia 2016: 228–35
- Pereira et al.: Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis. American Society of [6] Anesthesiologists 2018

System characteristics, compliance and compatibilities

	· · · · · · · · · · · · · · · · · · ·		
General EIT characteristics			
Number of Electrodes	32		
Image Rate	> 50 Hz (customizable (12.5 or 25 Hz))		
Feed Current	0.7 – 3.7 mArms; 200 kHz ± 10%		
Configurable	Patient mode (adult or neonatal), Analysis Mode		
	(BB, TB-I or TB-II).		
Signal Quality Indicator	Indication of electrode-to-skin impedance coupling		
	quality.		
Lung Contours	Various sets of predefined, CT-derived thorax and		
	Lung Contours. The set best fitting an individual		
	patient is selected based on the patient's gender,		
	weight and height.		
Data available for	Dynamic Image (data updated with image rate);		
various EIT Images	Tidal Image, Stretch Image with RTS histogram		
	(both with 10 categories), Silent Spaces Image		
	(with geometric center of lung contours, CoV and		
	HoV). The Tidal Image, Stretch Image and the		
	Silent Spaces Image data is updated breath wise		
	IN BB-Mode, once every 15-seconds in TB-1 mode,		
DI II	and are not supported in TB-11 mode.		
Pletnysmogram	of all impedance values of all lung nivels. It		
	or all impedance values or all lung-pixels. It		
Variaus other data	DTC quartiles holt time connector 9 holt		
Various other uata	connection status		
Dationt Desition (position of	connection status.		
Rotation	Patient rotation around the longitudinal axis with		
	the supine position being the zero-position.		
Inclination	Patient rotation around the transversal axis with		
2.10.1001011	the sunine position being the zero-position		

Temperature					
Operation:	OEM EIT Module	10 to 65 °C			
	LuMon™ Module	10 to 35 °C			
	SensorBeltConnector	10 to 35 °C			
	SensorBelts	10 to 35 °C			
	ContactAgent, ContactAgent-II	10 to 40 °C			
Storage:	OEM EIT Module	-20 to 60 °C			
	LuMon™ Module	-20 to 60 °C			
	SensorBeltConnector	5 to 40 °C			
	SensorBelts	5 to 40 °C			
	ContactAgent, ContactAgent-II	0 to 25 °C			
Humidity					
Operation	OEM EIT Module	15 – 90% non-condensing			
	LuMon™ Module	15 – 90% non-condensing			
Storage	OEM EIT Module	10 – 95% non-condensing			
	LuMon™ Module	10 – 95% non-condensing			
Atmospheric pre	ssure				
Operation	OEM EIT Module	660 to 1060 hPa			
	LuMon™ Module	660 to 1060 hPa			
Storage	OEM EIT Module	500 to 1060 hPa			
	LuMon™ Module	500 to 1060 hPa			
Ingress protection	ก				
LuMon™ Module		IP22			
SensorBeltConne	ector	IP54 / IPX1			
Compliance					
IEC 60601-1 (3rd	IEC 60601-1 (3rd edition), IEC 60601-1-2 (4th edition), ISO 10993-1 (2009)				
Classification acc	cording European Medical Device R	egulation 745/2017			
Class IIa: LuMon™ Module, SensorBeltConnector					
Class I: SensorB	elt, ContactAgent, ContactAgent-II				
Intra-System Compatibilities					
OEM EIT Modul	OEM EIT Modules/LuMon [™] Modules with TIC-SW 1.6.x.000 and adult-mode				

selected support SensorBeltConnectors/SensorBelts sizes 80, 92, 104, 116.

Belt Connector Port (isolated with 2 MOPP from the other interface ports)

max 10W

12 V (x = 5); 24 V (x = 0)

Suitable for continuous operation

Type BF Applied Part (Belt Connector)

Type BF Applied Part (Belt Connector)

Redel SP Plug SAN.M13.NLA.5GZ; customizable

1 LAN Port (100BASE-TX) - to connect the host device

9.5 cm x 9.0 cm x 4.0 cm (3.7" x 3.5" x 1.6")

Size

Powering Options

(IEC 60601-1)

Weight

Host Connector

Power Consumption Electrical Safety

Integration-ready OEM EIT Module (PN 100102-15x) (TIC-SW 1.6.x.000)

The OEM EIT Module (also referred to as Tomographic Image Creation (TIC) Module) is the core component of SenTec EIT technology. Thanks to its compact size and low power consumption, the OEM EIT Module can be integrated into a wide range of host configurations. The OEM EIT Module is used in SenTec's LuMon[™] Module and in SenTec's standalone EIT monitor called LuMon™ Monitor

< 150 g Weight

LuMon[™] Module (PN 2ST400-100) (TIC-SW 1.6.x.000)

SenTec's OEM EIT Module (see above) is now also available as an external module, making it easier than ever to implement SenTec EIT with existing medical devices such as patient ventilators

Physical Characteristics			
Weight	< 1 kg (lightweight)		
Size	18.3 cm x 12.6 cm x 7.4 cm (7.2" x 5.0" x 2.9")		
Mountable Various LuMon [™] Module Mounting Adapters fo			
	railings, infusion stands or VESA 75x75 mounts		
Interfaces			
Belt Connector Port (isolated with 2 MOPP from the other interface ports)			
1 LAN Port (100BASE-TX) – to connect the host device			

Electrical – Instrument	
External AC-Adapter 12 V	100 - 240 V ± 10% (50/60 Hz); C14 AC inlet
(PN 100404-101)	socket; various mains cables with different
	country-specific plugs available
Power Consumption	max 0.8 A at 230 V
	max 1.4 A at 100 V
Electrical Safety	Suitable for continuous operation
(IEC 60601-1)	Class I

Approximately 200 g

SensorBeltConnector (PN 1ST101-100)

Physical Characteris	tics
Dimension	9 mm x 59 mm x 36 mm / 142 mm x 51 mm x 18 mm
Lengths of Cable	Approximately 2.5 m

SensorBelts (PN 1ST20x-100)

Size	х	Underbust girth in cm	Its patented oblique design makes the SensorBelts follow the movement of
80	3	76-86	the ribs without restricting patient breathing, which would be highly
92	4	86-98	undesirable in patients suffering from respiratory insufficiency.
104	6	98-112	The textile SensorBelts have to be used on intact skin, are for single-patient
116	7	112-128	use and can be used for up to 72 hours. Use of sequentially applied
			SensorBelts on a single patient can be repeated for up to 30 consecutive days.

ContactAgent Kit (PN 1ST224-100) / ContactAgent-II Kit (PN 1ST226-100)

_		
Characteristics		
Content Spray Can	100 ml	
Kit Content	6 spray cans & 6 measuring tapes	
Microbial Status	Non-sterile	

The ContactAgent / ContactAgent-II serves as a medium for impedance coupling between a SensorBelt and the patient's skin. The ContactAgent / ContactAgent-II has to be used on intact skin and can be used for up to 30 $\,$ consecutive days.

being registered in certain countries.

SenTec AG Schulstrasse 1 CH-7302 Landquart Switzerland

